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ABSTRACT

This research involves an examination of techniques for solving scheduling
problems in long-duration space missions. The mission timeline is broken up into
several time segments, which are then scheduled incrementally. Three methods are
presented for identifying the activities that are to be attempted within these segments.
The first method is a mathematical model, which is presented primarily to illustrate
the structure of the temporal decomposition problem. Since the mathematical model
is bound to be computationally prohibitive for realistic problems, two heuristic
assignment procedures are also presented. The first heuristic method is based on
dispatching rules for activity selection, and the second heuristic assigns performances
of a model evenly over timeline segments. These heuristics are tested using a sample
Space Station mission and a Spacelab mission. The results are compared with those
obtained by scheduling the missions without any problem decomposition. The
applicability of this approach to large-scale mission scheduling problems is also

discussed.
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CHAPTER 1

INTRODUCTION

Scheduling is the assignment of limited resources over time to perform a set of
tasks (Baker, 1974). Scheduling problems arise naturally in many systems and are of
immense practical significance. Even many "simple" scheduling problems, however,
have been shown to belong to the hardest class of mathematical problems, known as
the "NP-hard" class (Ullman, 1976 and Garey and Johnson, 1979).

Space mission scheduling problems typically involve a multitude of activities.
Activities require multiple resources and are restricted by several types of constraints
which should be satisfied simultaneously. Adding to this difficulty is the inherent
(stochastic) nature of the domain to defy predictions. In long-term planning
problems, many constraints cannot be predicted accurately. Space Station scheduling
problems, in particular, present even greater complexity due to the length of the
missions involved. A natural way to handle this difficulty is to schedule in an
incremental fashion.

Several compelling reasons exist for scheduling long missions in an
incremental (segmented) fashion. The size of the planning problems may make them
computationally intractable. The scheduling difficulty would be compounded due to
the large numbers of activities and constraints involved in a long mission. For long

missions, the likelihood of rescheduling due to unforeseen developments increases



significantly. Such rescheduling is accomplished more efficiently when planning has
been done in a segmented manner. Furthermore, missions such as those of the Space
Station can be divided into natural increments defined by the arrivals of shuttles to the
station.

The capability to decompose a mission timeline into segments
("macrowindows") is available in the Experiment Scheduling Program (ESP) used at
NASA’s Marshall Space Flight Center. Since there is generally no need for
performing temporal decomposition in Spacelab mission planning, the macrowindows
capability is not typically used for this purpose. However, in anticipated long-
duration missions, segmented scheduling will be necessary. Therefore, a study of
temporal decomposition in space mission scheduling problems is indicated.

The aim of this research is to investigate means for effectively performing
segmented scheduling. Intelligent means of allocating activities to different mission
increments have been studied. The candidate solution techniques developed have been
evaluated on some simple, but realistic problems. The result of the experimental
work will hopefully provide useful information regarding the benefits of segmented
scheduling, and regarding promising means of carrying out such scheduling.

Chapter II presents some general characteristics and constraints of space
mission scheduling problems, including solution approaches used, followed by a
review of literature relating to segmented scheduling. In Chapter III, a mathematical

model for assigning activities to mission increments is presented, primarily in order to



illustrate the structure of the temporal decomposition problem. Since the
mathematical model is computationally intractable for realistic problems, Chapter IV
deals with heuristic assignment procedures. The first heuristic method is a loading
algorithm based on dispatching rules for activity selection. The second heuristic
assigns model performances evenly over time segments. In Chapter V, experimental
results are given for sample Spacelab and Space Station missions, followed by a
discussion of the performance of the loading algorithms. The applicability of the
proposed approaches to large-scale mission scheduling problems is also discussed. In
Chapter VI, some suggestions are given for future research on temporal

decomposition of space missions. Conclusions are presented in Chapter VII.



CHAPTER II

LITERATURE REVIEW

Space Mission Scheduling Problems

The scientific and operational environments are different for various space
missions. Consequently, the scheduling objectives and solution techniques used tend
to be unique. However, there are some similarities among the different types of
space mission scheduling problems, and in the type of constraints that restrict these
problems (time windows, for instance). Bullington and Jaap (1992) provide a
comparison of mission scheduling and production scheduling in terms of the

scheduling environment, objectives and solution methods.

Characteristics
Space mission scheduling problems are static problems in that the entire set of
tasks, along with the constraints, are generally known in advance. The tasks to be
scheduled are called "models" or activities. A model consists of several "steps" or
operations which are to be done in a required order. A model may have to be

replicated several times; these replications are called "performances.” No two steps
(or performances) of the same model should be active simultaneously.
Mission scheduling problems are subject to three broad types of constraints,

namely resource constraints, precedence constraints, and temporal constraints, which



place a restriction on when an activity can be executed. An obvious way of
enhancing schedule quality is to increase the number of activities that are performed
in parallel, while simultaneously satisfying these constraints.

When more demands are placed on the resources than can be allocated, the
resulting problems are referred to as "over-subscribed” scheduling problems. In
mission scheduling, both the number of models and the number of performances of
certain models are over-subscribed. The latter enables prioritization by providing a
high selection probability for such models. However, the number of model
performances actually scheduled must not exceed the specified maximum.

In production scheduling, deadlines are generally considered relaxable, even as
they are constraints placed on a job’s due date. Minimizing job tardiness is a
common objective. In mission scheduling, the preference (soft) constraints are often
the only relaxable constraints (Smith and Pathak, 1992). However, these should be
satisfied as much as possible since schedule quality depends on the degree of
fulfillment of both hard and soft constraints.

The optimization criteria can influence the scheduling complexity significantly.
For instance, in single-machine scheduling, optimizing for the flow-time criterion is
polynomial, while optimizing for the tardiness criterion is NP-hard. Mission
scheduling problems are multi-criteria optimization problems; the scheduling goals are
often conflicting, and may change with time. Two common objectives are to

maximize scientific return and resource utilization. Scientific return can be



maximized by increasing the number of models scheduled, and by scheduling as many
high priority (critical) models as possible (Gaspin, 1989).

When a solution that meets all constraints and objectives does not exist, it is
better to achieve one that provides the best overall compromise (Smith and Pathak,
1992). To accomplish this, the scheduling process must have low computational
requirements, thus enabling the generation of many trial schedules. The schedule has
to be periodically refined to overcome the effects of various dynamic factors such as
"targets of opportunity” and unexpected resource breakdowns. Schedule repair and
rescheduling techniques are employed to maintain and, if possible, improve schedule
quality, in such circumstances.

The complexity of mission scheduling problems, thus, is due to the number
and types of constraints, optimization criteria and stochasticity. Furthermore, the
scheduling difficulty in a space station is compounded by its long mission duration,
which typically leads to a significant increase in the number of activities to be
scheduled. A space station’s mission duration is expected to be more than a decade
(Goldin, 1993). For such missions, the computational overheads placed on the
scheduler would be extremely high if scheduling is done in a non-decomposed
fashion. This may, thus, force the use of some type of temporal decomposition, or

segmented scheduling.



Constraints and Requirements

The various constraints and requirements specified by models are outlined in

this section (Mission Planning Division, 1993 and Stacy and Jaap, 1988).

Temporal Constraints

Performance time windows define the time frames within which the
performances of a model can be executed. Each window specifies a start time, an
end time, and the maximum number of performances that can be scheduled within the
time frame. A model may indicate a preference to be scheduled at certain intervals
within its time window. Time windows may overlap or be intermittent. Models
(steps) cannot be performed outside these windows. Opportunity windows arise due
to a celestial or terrestrial target and/or attitude of the spacecraft. Macrowindows are
user-specified time windows.

Performance duration is the required operation time of one performance of a
model. Step duration is the operation time of a step, and defines the required period
of usage for any resource, crew, target and/or attitude specified by the step.
Performance separation time is the time delay between adjacent performances of a
model. Likewise, step delay is the time lag between a step and the previous step of a
model. The delays, step durations and time windows are specified as a minimum and

a maximum which must not be violated. The actual performance duration of a model



(the sum of the actual step durations and step delays) must not exceed the stated
maximum duration.

Scenarios are alternate orderings of the steps of a model. The production
scheduling equivalent is the existence of alternate routes to produce certain jobs. A
scenario consists of a list of steps, their order of execution, a priority rating, and a
selection strategy. Certain steps may be repeated in a scenario while certain others
may not be included. A selection strategy defines the conditions under which the
scenario can be selected.

A target represents a condition or opportunity required for scheduling a model
step. Target requirements are usually environmental in nature (the visibility of a
celestial or terrestrial target, for instance). A step can be scheduled only when all
specified targets are available. An attitude represents a requirement of a step on the
spatial orientation (inclination) of the spacecraft. A step may also specify that it not

be scheduled when a specific target or orbital opportunity is available.

Sequencing Constraints

Sequencing constraints specify the models that are to precede and/or succeed a
particular model. A step or model may be confined to start/end within a specified
time relative to another step or model (sequencing delays). If more than one
performance is requested for the required model, the sequenced model can be

executed with any of the performances of the required model. Multiple performances



can be scheduled following a performance of the required model. Thus, a model with
predecessors can start as soon as one performance of each required model is
complete; its earliest start time is the maximum of the completion time of the first
performance of the predecessors. Note, however, that activities in a mission do not

form a network as in project scheduling problems.

Relational Constraints

A model step may specify that it be performed concurrently with a step of
some other model. Concurrency may be mandatory, necessary or desired. In the
case of mandatory concurrency, neither step (model) can be executed without the
other. That is, both steps should be scheduled together; otherwise, neither can be
scheduled. Selection of one model for scheduling forces selection of the other. For
necessary concurrency, if both cannot be scheduled together, the concurrent step (the
one requiring concurrency) is not scheduled while the required step is unaffected. If
concurrency is desired, a step may prefer to be executed with another model step.
The concurrent step should be scheduled with the required step, if possible.
However, if this is not possible, the concurrent model can still be scheduled.

Scheduling of a concurrent model (step) is deferred if it is selected before the
required model. Also, irrespective of the type of concurrence, it is generally
preferred that the two steps start together. A step or a model may also specify that it

should not be scheduled concurrently with some other step or model.



Resource Reguirements

A step may use three types of resources, namely consumables, non-depletables
and equipment, and can be scheduled only when all specified resources are available.
Consumables are those resources whose availability is permanently decreased when
they are utilized (for example, energy, photographic film, etc.). Non-depletables are
those whose availability is decreased only for the interval of usage (for example,
power, crew time, etc.). When a step is scheduled, the availability of a non-
depletable resource is decreased by the amount of usage, which is replenished once
the step is complete. A step may also use some piece of equipment which is not
available to other models until the step is completed (a TV camera, for instance).
Resource carry-through enables resource usage to continue through the step delay to
the next step. Models must be scheduled such that the total resource usage, at any

instant, does not exceed the total availability.

Crew Requirements

Crew members may be required to perform, or (periodically) monitor model
steps. A step may require specific crew members or may enable a choice between
several persons. The latter flexibility in crew ordering can be used to balance crew
utilization to a certain extent. Crew balancing is performed on a per-performance
basis rather than on a per-step basis; if possible, the same members are utilized to

perform several related steps ("crew lock-in").
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Solution Approaches

The complexity of space mission scheduling problems requires the use of
diverse techniques to address different problems. Thus, within the same problem
domain, it is quite common to use a method that limits the search space over all
possible schedules, while another method is used to resolve resource assignment
conflicts (Thalman et al., 1991). Solution techniques designed to find optimal
solutions are generally unsuitable in mission scheduling problems due to their high
computational requirements. For instance, Sheskin (1988) developed a zero-one
integer programming formulation for scheduling experiments in the Space Station, and
solved an example problem consisting of two activities and ten time periods. The
computational requirements of such a model is bound to be prohibitive for realistic
instances. Since optimal schedules form a small subset of all possible schedules, it is
generally advisable to search for near-optimal schedules.

Many systems are available to NASA for scheduling space missions. Of these,
ESP is one of the most powerful and popular ones. It is a generic system, and has
been used for scheduling numerous Spacelab missions. It is also the host scheduler

for this research. The scheduling process used in ESP is outlined below.

The Scheduling Process of ESP

ESP selects an activity using dispatching rules, and constructs the schedule one

model performance at a time. The scheduling of a model depends on the selection

11



order and the satisfaction of the model’s constraints. In ESP, a multitude of activities
vie for limited resources. The selection order has a profound effect on schedule
quality since resources are assigned on a "first-come, first-served” basis. Once a
model is selected, the time periods available for the model are checked to determine
the time at which it can be scheduled with respect to the constraints. One
performance of the selected model is then placed on the timeline, and the resource
and crew availabilities are suitably adjusted. The process is repeated until all
performances of all models have been attempted (Jaap and Davis, 1988, 1989). The
quality of a timeline depends on the extent to which it accomplishes stated mission
goals. In general, a schedule that satisfies many different criteria is preferred over
another which fares well for only a few performance measures. ESP judges the
quality of a schedule using the schedule grade function which incorporates five

different criteria (Stacy and Jaap, 1988).

w,P + w,A + w,C + w,T + wsS)

Schedule Grade =

3

100

Number of Performances Scheduled
where P = s
Number of Performances Requested

Number of Activities Scheduled

Number of Activities Requested
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Crew Time Utilized

. Crew Time Requested ,
Activity Operation Time
' Minimum Activity Time Requested ,
Science Value Scheduled
S = ,

Science Value Requested
and w,, w,, w;, w, and w, are user-specified weights for the various criteria. Science

value gives the scientific value of a step relative to the mission’s expected value.

Selection Methods

Activities are generally grouped in terms of their discipline or experiment
nature. Various selection methods can be used within these groups such as (Mission
Planning Division, 1993): (1) fixed order selection, in which the user pre-specifies the
exact selection order (static), (2) random order selection, where each model
performance has an equal probability of selection, (3) maximize grade selection,
which selects a model that will cause the greatest increase in the schedule grade, (4)
most-constrained selection, in which the most time-constrained models in a fixed-
order group are attempted first, and (5) manual selection, in which the user
dynamically dictates the next model to be attempted.

Random selection is quite popular among system users. Grade-maximization

is a gradient (dynamic) selection method wherein the selection of a model depends on
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the current schedule quality and the grade of models available for scheduling. As in
production scheduling and project scheduling, no rule has been found to be robust
under a variety of conditions (see Blackstone et al., 1982, Boctor, 1990, and
Maxwell, 1987). Several trial schedules can be generated by varying the selection
order of model groupings, and by changing the selection rule; the schedule that yields

the "best" value for the schedule grade function is chosen.

Loading Algorithm

ESP uses forward chaining, and depth-first search with backtracking to place
one performance of the selected model on the timeline without violating any constraint
(Stacy and Jaap, 1988). The scenario to be employed is determined by the selection
method, based on the scenario strategy and priority rating.

The loading algorithm first determines the specific times at which the
constraints stated by a model step are satisfied. The constraints are checked in a
depth-first fashion ("nested windows") until a low-level search window where the step
can be scheduled is found. If any constraint is violated, checking proceeds to the next
search window. If all wiridows are exhausted, the model step is failed. A model
performance is scheduled only when all steps have been successfully loaded. Once
scheduled, models cannot be shifted or unscheduled.

Front loading of models is preferred due to the requirement that models start

as soon as possible, unless specified otherwise. This serves to schedule as much
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science as practical early in the mission which is a particularly important objective
due to the possibility of a premature mission termination, or other unforeseen event
(Bullington and Jaap, 1992). Also, front loading results in the building of a semi-
active schedule wherein no job can be performed earlier without altering the
sequence; Baker (1974) has shown that at least one optimal schedule is semi-active.
Maximizing step (activity) duration is preferred over maximizing the number of
performances since the former does not involve any increase in time lost due to setup

and stowage.

Temporal Decomposition

Problems associated with large systems are usually solved by decomposing the
system into connected or disconnected sub-systems. The complexity of a large
problem can be vastly reduced by decomposing it. The resource allocation problem
in a production system can, for instance, be split into independent dispatching
problems in the individual workcenters (Chryssolouris et al., 1991). Other types of
such non-temporal decomposition have been used frequently in scheduling problems
(see Yamamoto, 1977 and Chu et al., 1992).

Temporal decomposition involves breaking up the mission timeline into non-
overlapping segments, and identifying the models that are to be attempted within these
segments. Models should be assigned to segments such that they have adequate

opportunity for being scheduled, and such that their constraints and requirements can
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be satisfied while scheduling. Since several time choices exist for a model, the
decomposition process should place an activity at a good temporal position so as to
enable the scheduling of as many models as possible. Once such a decomposition has
been obtained, the various segments are scheduled in an incremental fashion.
Sadowski and Jacobson (1978) have shown that an optimal allocation of tasks in each
segment does not yield an optimal overall solution.

Little work has been done regarding segmented scheduling of space missions,
with the possible exception of the work by Machuca and Sadowski (1981), and the
SPIKE system developed for Hubble Space Telescope (HST) scheduling (Miller et al.,
1988 and Johnston and Adorf, 1992).

Machuca and Sadowski developed a scheduling system for NASA’s satellite
communications network in which the problem was treated as a generic resource-
constrained scheduling problem with time windows and over-subscribed resources.
Since there were no precedence constraints in this problem, the timeline was split into
segments. Two strategies, hamely the BASIC and the MAX procedure, were tested.

The BASIC procedure uses a sequencing approach in which jobs are attempted
to be scheduled in the order given by ranking rules. The MAX procedure utilizes
ranking rules and partial enumeration techniques to find the "best’ sequence. The
zero-one integer programming formulation, for multi-project scheduling, developed by

Pritsker et al. (1969), was adapted. Various job rankings and segment durations were
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tested based on the merits of the sequences they produced; the MAX procedure was
found to be the superior one.

A key distinction between communications scheduling and space mission
scheduling is the lack of sequencing and relational constraints in the former. Also, a
partial enumeration approach is likely to be impractical for mission scheduling due to
the large number of activities.

In the SPIKE scheduling system (Johnston and Adorf, 1992), observations that
are to be performed contiguously are "clustered” together so as to limit the number of
entities, thus reducing the problem size. A "cluster" is the smallest assignable entity,
and is assigned to start during the time interval of a segment. Multiple clusters may
be assigned to a segment, but a cluster can be committed to only one segment.
Activities within a cluster are not required to end within a segment.

"Suitability functions” were used to represent the level of satisfaction of the
constraints of an activity at a segment. Thus, these determine the desirability of
starting an activity at a segment by providing evidence for/against scheduling
decisions. The satisfaction of hard constraints was measured using constraint
propagation techniques, and the hard constraints were combined with the soft
requirements using evidential reasoning techniques. A cluster can be assigned to a
segment only if all activities within the cluster have non-zero suitabilities at that

segment. Detailed scheduling is done every week, during which the clusters and
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constraints are fully expanded. The schedule quality is measured by the "summed
suitability function."

Johnston and Adorf (1992) presented a zero-one mathematical formulation for
HST scheduling. This model was transformed to a static, timetable-type neural
network along with the apt biases and connection strengths. A neuron represents the
allocation of a particular cluster (row) to a particular segment (column). The linear
equality and inequality constraints of the mathematical formulation were modeled
using "guard neurons" which destroy the symmetry of the model. Asymmetric
feedback networks, as duly noted by the authors, have not yet been proven to be
asymptotically stable. The network can, however, be used without any training, and
attempts to find the maximal independent set of assignments. By controlling the
feedback dynamics of the network, both predictive and reactive scheduling can be
done. Several algorithms were developed using the "suitability functions" framework.
Of these, the neural encoding was found to be the fastest, and permits the most
exhaustive exploration of the solution space.

Miller and Johnston (1991) presented several methods for performing
segmented scheduling. A "procedural scheduler”, which commits clusters to
segments based on greedy algorithms, is described. These algorithms were found to
schedule clusters at times of low suitability, thus creating poor schedules. A modified
Hopfield neural network was used, in which clusters were assigned to segments upon

satisfying the constraints. The insight obtained from the neural network model was
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used to develop a constraint satisfaction formulation which was found to perform
better than the network formulation. Miller et al. (1988) remark that the "summed
suitability function" does not provide adequate discrimination between schedules since
it neglects the effects of diminishing resources within segments while scheduling the
clusters.

In SPIKE, as noted above, temporal decomposition is done in two stages: (1)
clustering the activities, and (2) assigning the clusters to segments. Alternatively,
activities can be assigned directly (i.e., in a single stage) to the segments. This may
lead to a balanced assignment, and thereby a better schedule, owing to the added
flexibility in assigning individual activities, rather than clusters of activities. Besides
the contrast in the degree of approximation, the SPIKE scheduling system and the
assignment algorithm given here (see Chapter III) are distinct in terms of the solution
methods used and the scheduling architecture employed.

HST is merely an observatory in space and the models to be scheduled are
basically telescopic experiments; this enables observations on similar targets to be
grouped together. In a space station, however, observation is simply one of the many
tasks, and there is likely to be a great degree of variety in the tasks. The number and
types of constraints that affect models in a space station is bound to be much higher
than those experienced in HST. The amount of parallelism expected in a space

station, for example, is much more than that encountered in the telescope.
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Segmented scheduling can be performed, in ESP, by specifying the
macrowindows of a model as segments in which it is to be attempted; provision is
available to define the number of performances that are to be attempted within these
macrowindows. It has been determined by NASA that a space station mission
timeline should be divided into week-long segments. Given the size of the space
station scheduling problem, the decomposition process should have low computational
requirements, thus permitting the evaluation of many different task orderings; a
possible slight degradation in schedule quality may be permissible in exchange for
computational savings (Bullington and Jaap, 1992).

In a segmented scheduling scenario, there is likely to be a significant reduction
in the scheduling time of ESP since: (1) the number of models that compete for
selection, in a segment, is limited due to temporal decomposition; this may lead to a
reduction in the selection time, and (2) the search required for loading a model
performance, in a segmented mission, is limited to be within the time length of a
segment; whereas, in a non-decomposed mission, ESP may have to search the entire

timeline before being able to load a model performance.
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CHAPTER III

MATHEMATICAL MODEL FOR TEMPORAL DECOMPOSITION

Pre-processing

Consider a space mission with i = 1, ..., M activities, where each activity, i,
has g = 1, ..., S, steps, and has to be replicated N, times (i.e., multiple
performances). Each step, q, of model i has a minimum and maximum step duration,
tmin,, and tmax,,, respectively, and a minimum and maximum step delay, dmin,, and

dmax,

iq» TESpectively, with the previous step of the model (when q = 1, the delays are

zero). Since the steps must be performed contiguously, model performances can be
thought of as being rendered in a single step; step-level modeling is likely to make the
decomposition tedious. The minimum and maximum performance durations of model

i are, respectively,

S

Pmin; = ¥ (tmin,, + dmin,)
q=1
5

Pmax; = I (tmax;,, + dmax,).
q=1

If several scenarios exist for a model, the one with the highest requirements or

maximum weight is chosen. The actual performance duration for model i, P, is
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between Pmin, and Pmax;. The minimum and maximum performance delays for
model i are given by Dmin; and Dmax;, respectively.

A mission has a total of g = 1, ..., G crew members, andb =1, ..., B
resources (renewable and non-renewable). Based on the minimum and maximum step
durations, each step, q, of model i requires NC;, crew members, each for {cmin,,
cmax,,} unit hours. Therefore, model i requires NC; crew members, where NC; =
max, {NC,;, 1 < q < S}. Then, each performance of model i requires between

cmin, and cmax, unit hours of each of the NC, crew members, where

S

cmin; = I cminy,
q=1
§;

cmax; = L cmax,.
q=1

Similarly, each step, q, of model i requires between rmin,,, and rmaxg, unit hours of
resource type b. The minimum and maximum resource usages of a model

performance of model i are, respectively,

§,
rmin,, = I rming,
q=1
S; ’
rmax;, = L rmax,y, for all i and b.
q=1
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Each model i specifies a set of crew members Cset;, where n(Cset) > NC, (i.e., crew
ordering is generally flexible). Crew usage also includes crew lock-in, and resource
usage also includes resource carry-through. The total resource and crew availability
through the length of the mission is R, unit hours, for all b, and C, unit hours, for all
g (if all members are equally available, C, = C, for all g), respectively. Only the
most constraining resources b need to be considered. The target, attitude, and
equipment requirements are not currently considered in the decomposition process.
In a segmented scheduling scenario, the mission is broken down into k = 1

,---» K non-overlapping segments of segment length, T (i.e., KT = Mission Length).
Assuming equal resource and crew availability within k, the total availability of crew
member g is C,, = C, / K; likewise, the total availability of resource type b is R,, =
R, / K. (If the actual crew and resource availabilities within each segment can be
found, this approximation is not required). Crew over-subscription, «, is found over
the entire set of crew members since, due to crew flexibility in model requirements, it
is difficult to find the exact level for each member. The over-subscription of each
resource type b is given by o,. These quantities are given by

M

L N, rmin,,

i=1

o, = —— ——, for resource type b

K

E Rkb
k=1

~and
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M
L N; NC, cmin;

i=1

G K
L L C,
g=1k=1
Using o and «, the total resource and crew availability within a segment are
adjusted as per the level of over-subscription. Consequently, more models would be
assigned to segments than can actually be scheduled. The resource and crew
availabilities found are aggregate, and do not reflect the specific values of these

quantities at specific times. If Pmin; > T for some i, that model must be split into

sub-models which must be constrained to be assigned to adjoining segments.

Mathematical Model for Assignment

Specifying the macrowindows of a model as segments in which the model is to
be attempted (i.e., temporal decomposition) is equivalent to assigning model
performances to timeline segments. The objective of temporal decomposition is to
allocate model performances to appropriate segments such that they have adequate
temporal opportunity for being scheduled; the assignment should enable the
scheduling of as many models as possible. The preference of model i for being
assigned to segment k is given by O,, and w; is its weight, or importance. The
relational, sequencing, and "soft” constraints are not included in this formulation. We

assume that these can be suitably incorporated in the preferences, Oy, through a
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preference-setting module. Since a model may start in one of several possible
segments, the preference for assigning a model to a segment can be naturally
expressed in a fuzzy manner. The total preference for assigning (i.e., scheduling) a
model in a segment can be found by rating only one "attribute" at a time (see Badran,
1988 and Kacprzyk and Fedrizzi, 1988).

Each model i may have v = 1, ..., V time windows of the form {Wmin,,
Wmax,,}, within which N,, performances are to be scheduled. The number of

performances is generally over-requested, that is

The minimum and maximum windows of i are Wmin, = min {Wmin,, for 1 < v <
V} and Wmax; = max,{Wmax,, for 1 < v < V}. These are transformed to L, =
[Wmin; / T] and U; = [Wmax; / T]*, which represent the first and last segment in
which i may be scheduled. (The notation "[X]" and "[X]*" iﬁdicates that X is
rounded down, and up, respectively). For example, if the time window of model i is
the entire mission, then L, = 1 and U; = K, where K is the last segment of the
mission. If i cannot be scheduled in segment k, say, due to intermittent windows,
then O, = 0. Time windows are modeled only implicitly; only the segments for an
activity, and not the specific times, are modeled. The number of performances of i
that may be assigned to k is limited by the performance duration and minimum

performance delays. The maximum number of performances of model i that may be
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assigned to segment k is given by MAX; = [T / (Pmin; + Dmin)]". Also, the
performances of certain models are to be distributed over the timeline. For instance,
photographic experiments on planetary targets are often required to be evenly spaced
over the mission in order to enhance their scientific return.

Based upon the above notation, the following mathematical formulation for the

assignment problem has been developed:

M U,
Maximize I I w; O, X 1)
i=1 k=Li
Subject to:
U,
r Xy =N, for all i, (2)
k=Li
X, < MAX,, foralliand fork = L,..., U, 3
M
T r, X; < op Ry, forallkandb, “4)
i=1
M
L ¢CyXy <aC,, forallkandg, (5)
i=1
L C, = NC, for all i, 6)
geCset;

X, = 0, X, is integer, and C;, € {0,1}.
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The objective, (1), is to assign model performances to segments so as to
maximize the total preference of the assignment; (2) states that, for each model, the
requested number of performances should be assigned to the segments with respect to
the time window constraints, while (3) says that no more than a specified maximum
number of performances of activity i should be assigned to segment k; (4) and (5)
state that the total amount of resource consumption and crew utilization, respectively,
must not exceed the total availability in a segment for the different resources and crew
members (the required amount of resources and crew time should be allotted to each
performance); (6) says that only the required number of crew members should be
used by an activity. The X, ’s are integer (non-negative) decision variables denoting
the number of performances of model i assigned to segment k. The C,’s are zero-one
variables specifying whether or not crew member g was utilized for activity i.

The number of X, (decision) variables, ;4 (U, - L, + 1), depends on the

i=1 M

time window of models, and the number of C, lvariables, ’E n(Cset;), depends on the
set of crew members, n(Cset;), specified by the models. T1h=e1 model requires a total

M
of 2M + £ (U; - L; + 1) + K(B + G)] constraints (excluding integrality and non-

i=1 M K
negativity). Certain resource types b may be overlooked if Z N; r, < £ R,,. Only

i=1 k=1

the most constraining resources need be considered. Likewisl:e, if crew members are
not a constraining resource, then constraints (5) and (6) can be removed, which would

make the formulation more tractable. Since time is considered only implicitly, the

model can be readily extended to long missions. The formulation is not affected by
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the mission or segment lengths, but rather by the number of segments. However,
(non-linear) integer programming models are generally difficult to solve and their
practical use is limited due to high computational requirements. Due to this
difficulty, heuristic methods that provide a "good" solution in a reasonable amount of
time are often employed. In the following chapter, we present one such procedure

for assigning model performances to segments.
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CHAPTER IV

HEURISTIC ASSIGNMENT PROCEDURE FOR TEMPORAL DECOMPOSITION

Assignment Heuristic

A model having no predecessor is eligible for selection immediately. Also, a
model is eligible for selection if at least one performance of all of its predecessors has
been scheduled. These facts are quite obvious, and have been used widely in
scheduling problems that involve precedence constraints (e.g., see Kelley, 1963). In
the heuristic given below, one model is selected at a time from a set of eligible
models, E, and its performances are assigned to appropriate segments in a sequential
manner. The assignment heuristic is basically an approximation of a scheduling
process, and may lead to a balanced assignment owing to the flexibility in assigning
individual activities, rather than clusters of activities. Any concurrency and
sequencing requirements specified by the steps are viewed as mandatory restrictions
on the model as a whole. Accordingly, a model desiring concurrence is attempted in
the same segment as that of its required model, which may enable the steps to be
scheduled together. Any éequencing delays between models are to be considered only
while scheduling (i.e., by ESP).

Let i, and i, be the set of predecessors and concurrencies, respectively, of
model i, and i, be the subset of i_ that has already been assigned. Let ST; and CT;

denote the start time and completion time, respectively, of the first performance of
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model i. A set of preferred segments, PS;, is used to indicate the segments (i.e.,
times) at which model i prefers to be scheduled, and to skip unfit increments within
its time window. If both concurrencies and segment preferences exist for a model,
the former are given priority. PT is a variable that indicates the present time for the
selected model. Njpr; is the minimum number of preferences of i that can be assigned
to the segment [PT / T] with respect to the resource, crew, and temporal constraints.
A, is the number of performances of i that are actually assigned to segment k, and A;
is the total number of performances of model i assigned to all segments. The
unassigned model performances, UA;, are assigned "evenly" over the segments of the

model (this procedure is described in some detail in the next section).

Step 0. Initialize. A, = 0, for all j,and fork = L, ..., U,.

Step 1. Find the set of eligible models, E.
E={uu=0u=1,.. M}and
{u: A, > 0, forallj € yju=1, .., M}

Step 2. The select and assign process is repeated until all eligible models have been
attempted. If E = 0, END.

Step 3. Select a model i using some selection rule, 7. i = j: mincg .

Step 4. Find the "earliest” start time of i with regard to its time windows,
predecessors, concurrencies, and preferred segments. The earliest start time

(segment) of a model is the maximum of (a) the minimum performance time
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window, and (b) the maximum of the completion time of the first
performance of its predecessors, if any. If possible, the model is made to
start in the same segment as the first performance of any concurrent model,
in order to provide them a chance for being performed concurrently.
Consequently, even if the first performance of the models are not scheduled
together, concurrency may still be met with some other performance.

ST,;, = max, {CT,|u € i}; ST, = min, {ST,lu € i,}.

iip

(If i, = 0, ST,;, = Wmin;; likewise, if i, or i. = 0, ST;,, = Wmin,).

Jip

PT = Wmin; If ST,, > PT, PT = ST,,; If [ST,.../ TI' > [PT/ TT,

iip Jip>
PT = [ST,,. /TI' X T.

If min,cps; kK > [PT / T}, PT = k X T, Else, update PS; to point to segment
k: k = [PT/T] + 1. Skip this sub-step if PS; = 0.

Step 5. Model i is to be attempted serially over the segments until all of its
performances have been assigned, or until the maximum time window is
reached. Step 5 ensures that no model performance is assigned outside its
time window.

IfPT = U, X T, UA, = N;- A;; Goto 1.

Step 6. Find the minimum number of performances that may be assigned to segment

[PT / T], subject to the availability of sufficient duration, resources, and

crew time.

Nipry = min { Nipryr, Niprr, Niprc }, Where
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Niprr = [([PT]* - PT) / (Pmin; + Dminy]’,
Niprr = min, [Ripry, / rmin, ],
Nipric = minyeccpery [Ciprg / CMiNg]',
and CC[PT] € Cset, is the set of crew members who have been utilized
minimally in segment [PT / T]; n(Cset) = n(CC[PT]) = NC,.

Step 7. If no performances can be assigned in [PT / TT, try the next possible, or
next preferred, segment.
If Ny < 1, PT = ([PT/ T + 1) X T, or, if PS; is not equal to 0,
then PT = PS, X T; Go to 5.

Step 8. Find Ajpr, such that A, < N;; the number of performances assigned must not
exceed MAX, . The resulting performances are relegated to segment
[PT / TT, and the resource and crew availabilities are suitably updated.
Crew flexibility is exploited to engage the least-utilized members. The
actual start time and completion time of the first performance are noted;
these are used only as indicator variables in the assignment, and are
irrelevant while scheduling.
If A, = 0, ST, = PT and CT,; = PT + pmin,.
If Njpry > MAX,,, Nipry = MAX.

((PTT-1) ([PTT-1)

If hI'l = 2 Aik > Ni[m, then Al[P']'] = Nl[m; else, Al[pr] = Ni = E Aik'
k=L, k=L,
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Ripry = Reprp - Ayprp X rminy,, for all b,
Ciprie = Crprye - Aypry X cmin,, for all g € CCpyy.

Step 9. If some performances are still unassigned, try the next (preferred) segment;
else, in the next step, determine if any new model of those previously
ineligible can now be released into the selection stage due to the previous
allocation.

((PTT-1)
IfN,-Z A, > 0, PT = ([PT/T] + 1) X T, or, if PS, is not equal to 0,

k=L,

then PT = PS, X T; Go to 5; else, Go to 1.

Activity Selection Rules

The following four selection rules were used in the heuristic to select a model
i € E with the :

(1) fewest number of requested performances, (w,,; = N;, for all j),

(2) shortest activity duration, (m,,; = N; (Pmin; + Dminy), for all j),

(3) shortest time window, (m,,; = Wmax; - Wmin,, for all D,

(4) highest criticality, (7,; = (T, - Tay) / Ty, for all j).
A fifth rule, w,, was used to select i randomly. For all the rules, ties are resolved in
favor of the model that has the most number of successors. Several composite (bi-

level) selection rules may also be employed. For example, models can be grouped
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based on ,, or ,, and a second rule (e.g., use of similar resources) could be
applied to discern between models in the same group.

A sixth rule, w, (the "even" heuristic), assigns the performances of model i
"evenly" over the possible segments, L; to U;, ignoring all other constraints. The
number of performances, A,, of model i assigned to segment k depends only upon its
time window, {Wmin,, Wmax;}. If N, = 1, then this single performance is assigned
to the first (preferred) segment of i. If N; < (U; - L; + 1), the performances are
assigned to the preferred segments, and earlier segments. In general, with this
"even" heuristic, the performances of model i are distributed as follows:

N, = [{(L, + DT - Wmin} / 7, ; X N, for all i.

If N, = N, A, = N;; Else, Ay; = Ny, for all i.

Fori=1,....M

Fork = (L, +1), ..., (U;- 1)

Ny = [T/ m; X NJ7

k-1 k-1
IfN, = N,-T Ay, Ay = N;-L A,; Else, A, = N,
W=Li W=Li

Next k
Next i
Nii = [(UT - Wmax) / m,,; X NJ*, for all i.
Url Ul

If NiUi = Ni - E Aiw N AiUi = Ni = E Aiw; Else, AiUi = NiUi’ fO!‘ a]l 1

w=L, w=L,
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The following factors result in a loosely-linked decomposition, and, thus, deter
the independent (parallel) scheduling of the time increments:

® Model performances must slide over the time continuum. Thus, it is
imperative to schedule certain performances in a split fashion (partially). In
fact, models whose performance duration are greater than the segment length
(i.e., Pmin, > T) must be scheduled in a split fashion. When splitting, the
remaining duration (i.e., unloaded steps) must be carried over to the
subsequent segment(s). The capability to schedule a model performance

partially is currently not available in ESP.

® The required delay between performances or steps, and any sequencing delays
between models, should be satisfied. The scheduler should consider such

delays with respect to models assigned in preceding segments.

® The scheduled duration is likely to be higher than the minimum duration. In
fact, ESP tries to maximize step durations, thus maximizing performance
duration. Model performances not scheduled in the segment to which they
were originally assigned may be schedulable in others. Thus, after scheduling
a segment, the unscheduled performances must be moved to the next possible
increment. Some model performances may not be scheduled at all due to

resource over-subscription.

35



CHAPTER V

EXPERIMENTAL RESULTS

Introduction

In this chapter, results of experimentation on the use of segmented scheduling
and temporal decomposition are reported. Based on whether the mission is scheduled
in a segmented (SS) or non-segmented (NS) manner, and based on whether the
activities are temporally decomposed (TD) or non-decomposed (ND), each mission
can be scheduled in four different ways, namely ND/NS, ND/SS, TD/NS, and
TD/SS.

NS corresponds to scheduling a mission fully, rather than in separate
segments. ND means that macrowindows are not used to divide the mission into time
segments for the purposes of assigning model performances. ND/NS is the way
NASA generally does mission scheduling. In this research, we are primarily
concerned with the effectiveness of ND/SS and TD/SS schedules. In the former, we
examine the effects of scheduling missions in a segmented manner only; in the latter,
we investigate the usefulness of both restricting activities within segments (TD) and
scheduling the segments incrementally (SS). TD/NS is examined basically to gain
some understanding as to how good we can do by restricting (only) the activities, and
still fully scheduling the mission. TD/NS can be viewed as a sort of loose upper

bound on the performance of TD/SS.
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Activity data for two hypothetical missions was made available for use in this
study. These missions include a small Space Station mission with a 48-day duration
and an 8-day Spacelab mission. For the ND/SS and TD/SS schedules, both missions
are split into eight segments. For the Space Station, the segment length , T, equals
six days, while T equals 1 day for the Spacelab mission. Results for these missions
are presented in Tables 1 and 2 below. For all these schedules, the weighting factors
in ESP’s schedule grade function were set equal to one.

In the tables, "GM" is the grade of the schedule obtained using the grade
maximization rule. "RB" is the schedule that had the best grade value among five
randomly-generated schedules. For each mission, 15 different sequences of model
groups were first tested using ND/NS (GM). In all the results given below (for both
missions), the sequence that gave the best GM value was used. Typically, there is
only a slight difference (one or two grade points) between GM and RB, and GM takes
much less time. Macrowindows were not defined for models for which Pmin, > T
and, since ESP does not have the capability of scheduling performances partially over
the segments, these were not scheduled at all in the ND/SS, TD/NS, and TD/SS
schedules.

In Tables 1 and 2, I' is the grade value, and TP and TM denote the total
number of performances and models, respectively, which were scheduled. TC and
TA denote, respectively, the crew time and exposure/activity time scheduled (in

hours). The last column is the CPU time (in seconds) taken by ESP for scheduling
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the mission on a VAXstation 4000 Model 60. "Rule" denotes the selection rule used
for temporal decomposition. The assignment and "even" heuristic were coded in "C",
and the CPU times taken (in seconds) on a SUN SPARCstation 1+ to decompose the
Space Station and Spacelab missions are denoted by "CPU’" in the "Rule" column.
The first two rows in the tables give the details of the timeline that is imported before
beginning each scheduling session. This timeline consists of the crew and system
operations which are hard-scheduled by NASA (e.g., crew sleep schedules). The next
row gives the total mission request.

When using the assignment heuristic, the unassigned performances, UA,, are
allocated evenly over the model’s segments. If UA; = 1, this lone performance is
assigned to the first (preferred) segment. Even allocation would make the
assignments from the different rules (via the heuristic) be fairly similar. This is
reflected in the TD/SS grades of both missions, which are nearly the same,

irrespective of the rule employed.

Space Station Mission Results

Results for the Space Station mission are given in Table 1. By comparing
ND/NS (NASA’s general scheduling procedure) with TD/NS, we see that we lose
about two grade points by defining the macrowindows on models (i.e., "TD") - fewer
performances are scheduled in the TD/NS schedules. While the CPU times for

ND/SS and TD/SS schedules are quite low, their performance is fairly poor when
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Table 1 - Results for Space Station Mission

T TP ™ TC TA CpPU

Rule Import Request - 200 40 7635 3938 -
(CPU’) Import TL 98.8 | 193 40 7464 3955 -
Mission Request - 1387 83 7903 20752 -

ND/NS GM | 95.5 | 1292 81 7660 19972 599

RB 96.3 | 1313 82 7662 20145 872

ND/SS GM 84.4 | 1282 71 7654 13646 320

RB 84.6 | 1303 71 7656 13657 971

T, TD/NS GM | 93.7 | 1265 79 7652 19727 832

0.3) RB 94.4 | 1276 80 7636 19897 | 1073

TD/SS GM 82.7 | 1256 69 7637 13553 266

RB 82.7 | 1270 69 7626 13500 444

T TD/NS GM | 93.4 | 1240 79 7601 19944 633

(0.3) RB 93.7 | 1243 80 7603 19888 960

TD/SS GM 82.6 | 1244 70 7596 13593 222

RB 82.3 | 1245 70 7590 13522 647

Tiw TD/NS GM | 93.7 | 1263 79 7636 19821 540

0.2) RB 94.5 | 1268 81 7635 19945 861

TD/SS GM 83.4 | 1258 70 7640 13663 173
83.3 | 1267 70 7633 13644 651

5

Tad TD/NS GM | 92.1 | 1230 79 7613 19085 736
93.0 | 1236 81 7615 19235 937
TD/SS GM 81.7 | 1221 70 7608 12916 199
81.5 | 1231 70 7603 12901 569

o~
o
(8]
~

&

™ TD/NS GM | 93.8 | 1253 80 7621 19800 757

(O.g) RB 93.8 | 1268 80 7626 19726 934
TD/SS GM 82.8 | 1243 70 7616 13446 231

RB 82.3 | 1257 69 7611 13442 613

T, TD/NS GM | 93.5 | 1255 79 7657 19644 495
0.1) RB 94.3 | 1282 80 7652 19783 722
TD/SS GM 83.3 | 1249 70 7646 13649 236

RB 83.6 | 1278 70 7654 13659 542
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compared with that of ND/NS (the difference in grade is over ten points). The CPU
time differences may be much more significant for very long missions.

The TD/SS schedules take much less time for all the cases, and this difference
would be significant for long missions. The primary difference between TD/NS and
TD/SS for almost all the rules is that some activities having a high activity (exposure)
time do not get scheduled using TD/SS. These are probably the activities whose
Pmin, > T. Also, ND/SS is only slightly better than the TD/SS’s. But the TD/SS’s
take much less time than ND/SS. For long missions, using TD might be helpful
because of this fact.

It appears that the six assignment rules can be divided into three groups with
respect to their performance for this problem. The =, (i.e., shortest time window)
and 7, (i.e., "even" decomposition) rules appear to perform best for the TD/SS cases.
The =, (i.e., fewest number of requested performances), =, (i.e., highest criticality),
and 7, (i.e., random) rules appear to perform equivalently to «,, and = for the
TD/NS cases, but slightly worse for TD/SS. Finally, the 7,4 (i.e., shortest activity

duration) rule appears to be the worst rule for both TD/SS and TD/NS.

Spacelab Mission Results

Results for the Spacelab mission are given in Table 2. For this mission, there
is very little difference between ND/NS and ND/SS. Also, none of the TD/NS or

TD/SS cases match the ND/SS value. So, once again, doing segmented scheduling
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Table 2 - Results for Spacelab Mission

r TP ™ TC TA CPU
Rule Import Request - 771 160 760 2664 -
(CPU’) Import TL 99.0 392 160 840 3573 -
Mission Request - 991 173 772 2708 -
ND/NSGM | 1104 764 173 1015 3752 | 311
RB 110.5 768 173 1014 3752 | 479
ND/SS GM | 110.3 767 172 1017 3750 | 106
RB 110.2 769 172 1012 3749 | 759
e TD/NS GM | 104.6 715 171 876 3702 | 122
(0.4) RB 104.6 715 171 876 3702 | 253
TD/SS GM | 105.0 733 171 874 3712 | 136
RB 105.1 734 171 875 3714 | 576
T TD/NS GM | 104.9 721 171 881 3702 | 150
0.4) RB 104.9 721 171 880 3702 | 182
TD/SS GM | 104.9 721 171 881 3701 | 143
RB 104.9 721 171 880 3701 | 545
T TD/NS GM | 105.2 721 171 892 3707 | 139
(0.4) RB 105.3 722 171 894 3709 | 179
TD/SS GM | 105.2 721 171 892 3706 | 164
RB 105.2 721 171 891 3705 | 460
T TD/NS GM | 104.7 716 171 876 3704 | 166
(0.5) RB 104.7 716 171 875 3704 | 236
TD/SSGM | 104.4 712 171 873 3702 | 153
RB 104.5 713 171 874 3704 | 521
Tap TD/NS GM | 104.5 713 171 874 3704 | 144
(0.3) RB 104.6 714 171 876 3704 | 193
TD/SS GM | 104.5 713 171 876 3702 | 157
RB 104.6 714 171 876 3704 | 574
T, TD/NS GM | 105.3 736 171 876 3710 | 158
0.2) RB 105.4 737 171 876 3713 | 221
TD/SS GM | 105.3 736 171 876 3710 | 166
RB 105.3 736 171 876 3711 | 476
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alone (i.e., without temporal decomposition) seems to be a good option.
Interestingly, there is very little difference between TD/NS and TD/SS for most of
the rules, except for the Random rule, where some extra performances are scheduled
for TD/SS. It is not clear why none of the TD/NS cases are as good as ND/SS.
With regard to TD, the =, and =, rules again appear to perform best.

For this mission, there seems to be no real advantage in using TD in terms of
the scheduling time since ND/SS (GM) actually takes less time than the TD/SS’s.
Also, comparing the CPU times of TD/NS and TD/SS shows that the former actually
takes less time, even though the mission is scheduled completely. In fact, the ND/NS
and ND/SS yield much better grades even though their CPU times are only slightly
longer. However, it should be noted that this mission is probably not long enough to
serve as a good test for segmented scheduling and decomposition. Most of its
activities are quite short, also. To adequately compare the effectiveness of ND/SS
with TD/SS, we may need to have fairly long missions so that the results can be

extrapolated to durations expected in Space Station missions.

General Comments
Models not scheduled in a segment were not transferred to the next possible
segment, since such a mechanism is not currently available. The schedule grades
obtained by way of decomposition can be improved by scheduling certain models

partially within the segments, and by transferring unscheduled performances to the
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next possible segment. The lack of a long-duration test case makes it difficult to
fairly evaluate the methods. Further experimentation is needed in order to make more
general statements about the usefulness of the proposed methods. However, it should
be noted that the =, and =, rules, and the ND/SS method, are simple, realistic, and
appear to work relatively well.

The Space Station mission has little concurrency, activity sequencing
requirements, or energy requirements. It does, however, have some long activities.
On the other hand, the Spacelab mission has a great deal of sequencing, concurrency,
and energy requirements, but with fewer long models. Realistic mission scheduling
problems tend to involve many activities, with multiple objectives and numerous
constraints. Knowledge of the critical characteristics for a particular mission should
be very helpful in identifying appropriate selection rules and decomposition methods.
There would probably be some advantages in categorizing the characteristics of a
mission, at least in some aggregate sense, since this should provide some insight into
the likely usefulness of segrﬁented scheduling and decomposition for that particular
mission. Differences in mission characteristics are likely to lead to substantial
differences in the quality of schedules produced by the different methods.

There are several possible means of handling very long activities (i.e., those
with Pmin, > T). They could be split into sub-models (or steps) which have
sequencing constraints between them so that the sub-models are scheduled

contiguously. Alternatively, these activities could be partially scheduled, with the
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remaining processing time carried over into the next time segment. However, if these
activities have intermittent time windows, the partial scheduling approach may
become quite complicated. It could be possible to use the step delays and
performance delays to account for intermittent time windows. However, a
representation scheme which does not involve such activity splitting would be much
more efficient and desirable, given that the performance duration of many models in a
space station mission are expected to last as long as several weeks (Stacy and Jaap,

1988).
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CHAPTER VI

SUGGESTIONS FOR FUTURE RESEARCH*

General Comments

Both ESP and the decomposition algorithm employ the select and assign
framework. ESP’s loading algorithm attempts to schedule one model performance at
a time. The assignment algorithm, however, attempts to assign all model
performances to suitable segments sequentially, so as to preserve the continuity of
placing (scheduling) model performances over the time segments. Clearly, the idea
behind the heuristics is quite simple. It remains to be seen how effectively more
sophisticated procedures may perform in temporally decomposing the activities. If
activities in a mission are homogeneous, there must be some advantage in attempting
clustering-based methods for decomposition. However, in general, there is no
obvious way to cluster the activities due to the variety of different activity types
common in space missions.

An alternative strategy would be to attempt model performances in only one
segment at a time. Assignment progresses by filling the segments sequentially, rather

than assigning a model serially. If no model can be assigned to a segment, allocation

* Venkata R. Neppalli served as a co-author for this chapter.
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proceeds to the next segment. The time window and time criticality rules can be
implemented in a dynamic fashion wherein only the active segments are considered
while finding the time available for a model. Resource-based selection rules can be
employed (for instance, "select the model that will maximize resource utilization if
scheduled"). Special consideration may be required to account for the delay between
performances. Model performances should be assigned in a global sense since an
optimal assignment in the individual segments does not lead to an optimal overall
solution (Sadowski and Jacobson, 1978). If a global assignment strategy can be
identified to perform decompositions of this kind, the assignment process can focus on
allotting the most suitable models to a given segment rather than having to allocate
models far into the future.

While performing segmented scheduling, it may be necessary to use different
scheduling rules in the various segments. A proficient scheduler may be able to
identify the most likely set of rules that might yield a good schedule. Also,
adaptively switching between a set of rules during the scheduling process may be
employed; this approach has yielded better results than using a single dispatching
rule, in a production scheduling environment (for instance, see Chandra and
Talavage, 1991). Inductive learning techniques (such as Genetic Algorithms, or ID3)
can be used to categorize problem situations and to identify effective rules for these

situations based on their performance. Such a switching mechanism will also be very
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useful in the assignment (decomposition) process since schedule quality depends
heavily on the order of selection of tasks.

The evaluation function for the decomposition process should judge if the
scientific and operational requirements can be met by a given assignment, while
scheduling. A fuzzy preference-setting module or a method similar to the "suitability
function" scheme used in SPIKE may be necessary. A suitable strategy while
performing segmented scheduling would be to identify good partial schedules, in the
early segments, which may serve to yield reasonably "good" timelines. Evaluation of
the quality of a partial schedule is a key issue as this may enable an efficient
distinction between the various assignment configurations without actually scheduling
them completely. However, this may be intractable due to resource assignment
conflicts, resource over-subscription, stochasticity, etc. The schedule grade function
only measures the aggregate quality of a schedule, and does not consider the
priority/importance of activities, the extent to which important constraints are
satisfied, etc. In this regard, it might be useful to have two grade functions - an
aggregate one to distinguish between the poor and good schedules, and another to be
used in evaluating schedules with good aggregate grade values.

Models whose performance duration is greater than the time length of a
segment can be divided into sub-models. However, a representation scheme which

does not involve such splitting would be more efficient and desirable given that the
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performance duration of (many) models in a Space Station mission is expected to be
several weeks.

Rescheduling and schedule repair are likely to be important tasks as schedule
deviations in the earlier segments may cause a compounding ("ripple") effect in the
subsequent segments, thus complicating the scheduling problem. In such a situation,
it would be necessary to preserve the temporal position of certain high priority
activities which may be critical to the mission’s success. Schedule revision must

focus on preserving such activities at the expense of low priority activities.

Possible Use of Artificial Neural Networks

In view of the inherent complexity of space mission scheduling, decomposition
is viable and important. The preliminary results presented herein show promise with
respect to temporal decomposition, but are disappointing with respect to segmented
scheduling. Several factors, such as the complexity and size of the problem, selection
bias, and so on, may have contributed to these results. At any rate, it appears that
more sophisticated methods for temporal decomposition and segmented scheduling
should be investigated. Even though dispatching rules such as those used in this study
provide simple means of accomplishing activity selection, more sophisticated
approaches may handle the problem more effectively.

Approaches which use adaptive learning to exploit the problem structure may

be considered to extend the present solution framework. We consider neural
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networks as a promising technique, and propose the following framework which may
provide guidance for evolving more sophisticated approaches for temporal
decomposition with the capabilities of adaptivity and learning. In the proposed
approach, neural networks may be incorporated as a component for assessing and
learning the schedule quality and characteristics. The proposed approach may provide
a better alternative for doing temporal decomposition without much degradation in
schedule quality as compared to the methods currently in use.

Neural networks model the human nervous system and have been successfully
applied to several classification and clustering problems which are as complicated as
natural language processing problems. The suitability of neural networks can be
justified by their speed and ability to learn the problem characteristics in an
unsupervised manner.

Several factors influence the efficiency of decomposition, and in an ideal case
the approach should be able to decompose the problem into "disjoint” sub-problems.
However, in many problems‘ this may not possible. In order to deal with such
problems, which result in inter-connected inter-dependent sub-problems, an
approximate decomposition must be used. Also, decomposability of the problem,
combined with the optimality criteria, will affect the performance of the
decomposition approach in terms of efficiency and feasibility of the final schedule. In
the proposed approach using neural networks, an iterative decomposition of the

timeline can be considered, and a feed-forward neural network can be used to
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adaptively classify the activities into segments in order to achieve a quality schedule.
In other words, the proposed approach investigates the means of replacing the
dispatching rules with a neural network, hence relieving the burden of understanding
and optimizing the bias in the selection methods.

In this approach, the problem segments are iteratively loaded with the
activities. At the present time, the facility of using an external program to submit the
activities and run the ESP is unavailable. Therefore, instead of actually scheduling
the activities in each segment, an approximation of the actual scheduling is used to
estimate the performance of the network. Due to the iterative loading of activities in
each segment, the approach considers sequencing as well as relational constraints.

In the proposed approach, each performance of an activity will be considered
as an entity and the problem consists of forming a dynamic and iterative classification
network which will be used to evolve an approximate schedule by classifying the
entities of the problem. The network basically consists of two sets of input nodes.
The first set will be used to input the attributes of the segment and the second set will
be used to input the attributes of the activities.

As mentioned above, we assume that the timeline is decomposed into suitable
segments. Segments are then considered one at a time. From the basic set of eligible
activities, each activity is fed into the network to decide whether the activity belongs
to the segment or not. Hence, the output from the network, from a single output

node or a set of output nodes, is used to determine whether the activity belongs to the
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present segment or not. Once an activity is assigned to the present segment, the
attributes of the segment are changed by considering the consumption of resources by
the assigned activity. Hence, before loading the next activity, the attributes of the
segment are updated. This implies that the network evaluates the suitability of the
present activity to the current segment. In other words, the approach basically forces
the network to form clusters in each segment.

After finding the set of activities which are assigned to the current segment,
the procedure continues to the next segment, and so on. After completing all the
segments, an approximate loading algorithm is used to schedule the activities in order
to empirically estimate the grade. It should be noted that the grade estimation of a
schedule is an approximation and is expected to reflect the actual grade. Using this
measure, the feed-forward neural network adjusts its weight in order to enhance its
performance measure. The procedure is repeated until a desired performance level is
achieved.

The proposed framework employs a structured approach and provides a means
of iterative decomposition. The performance of the approach depends on several
factors such as (i) defining the attributes of an activity, (ii) defining the attributes of a
segment, (iii) the procedure for updating the attributes of a segment, (iv) the
procedure for approximating and evaluating the schedule, and (v) the architecture and

type of the network.
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A neural network approach to the problem offers several potential advantages.
These include flexibility in incorporating user-defined selection bias, the provision of
a means of analyzing and estimating the important attributes of activities and segments
(and thereby deriving a good schedule), the offline nature of the procedure, and the
ease with which the method can be parallelized.

Obviously, several important issues must be resolved in order to implement the
proposed neural network framework. Also, several possible means of implementing
the framework need to be investigated to determine the best design of such an
approach. Two possible implementation approaches include (i) using a parallel
network architecture and assigning an individual network to each segment, with all the
individual networks connected in parallel, and (ii) extending to a parallel distributed

network in order to process all the segments simultaneously.
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CHAPTER VII

CONCLUSIONS

In the course of conducting this research, a thorough review of the literature
pertaining to space mission scheduling problems has been conducted. The unique
features of such problems have been highlighted. The need for segmenting long-
duration problems for purposes of activity assignment and detailed scheduling (i.e.,
"temporal decomposition” and "segmented scheduling”, respectively) has been
documented. The problems inherent in attempts to perform temporal decomposition
and segmented scheduling have been discussed. A non-linear, zero-one integer
programming formulation has been presented as one means of defining the nature of
the temporal decomposition problem.

Due to the computational complexity of the temporal decomposition problem, a
heuristic assignment framework is presented, and implemented using several different
simple activity selection rules. All combinations of segmented vs. non-segmented,
and decomposed vs. non-decomposed techniques were tested using data from one
sample Space Station missibn and one sample Spacelab mission. These preliminary
results indicate that (i) using segmented scheduling, rather than non-segmented
scheduling, may or may not result in a degradation in the quality of the schedule,
depending on the characteristics of the mission involved, (ii) the relative performance

of decomposition vs. non-decomposition also appears to be mission-dependent, (iii)
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two of the activity selection rules used within the heuristic appeared to perform best
across all experimental conditions, namely, the selection of activities with the shortest
time window first (i.e., "=,"), and the assignment of performances of a model evenly

L

across its possible segments (i.e., "7.").

As is often the case with preliminary research, numerous questions remain to
be studied. The results of the experimental analysis clearly indicate the need for
means of defining and classifying the characteristics of a specific mission, and
understanding how those characteristics affect the quality of schedules produced by
the use of temporal decomposition and/or segmented scheduling. An offline learning
technique, such as neural networks, may be useful in classifying missions for this
purpose. The use of clustering approaches, in general, for this type of problem
deserves further attention. The use of adaptive selection rules should also be studied,
as well as means for identifying "good" partial schedules as the schedules are being

developed. Finally, the issues of rescheduling and schedule repair are suggested as

critical areas of future research on the planning of long-duration missions.
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